ISSN : 1225-0112(Print)
ISSN : 2288-4505(Online)
ISSN : 2288-4505(Online)
Research Papers : Preparation and Properties of Soluble Polyimide with Methacryloyl Group
Abstract
Polyimides have been investigated extensively and used widely over the past three decades because of their high
performance properties such as excellent thermal, mechanical, and electrical properties. Polyimides are difficult to be
processed because of the aromatic moieties, imide group, and insoluble nature in most organic solvents. The soluble
polyimides were synthesized from 2,2,-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF) and 3,3,-diamino-4,4-
dihydroxybyphenyl (HAB) as aromatic diamines and 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic
dianhydride (PMDA), 4,4-oxydiphthalic dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride
(BTDA) and 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride (DSDA) as aromatic dianhydrides. The polyimides were
characterized by NMR, FR-IR, TGA and the dielectric constant of the obtained polyimides was calculated from storage
of electro-capacity. A novel photosensitive polyimide was synthesized by the reaction of polyimide, containing hydroxyl
group and methacryloyl chloride using triethylamine. The good micro-pattern was obtained with photosensitive polyimide
from the photolithographic technique.
연구논문 : Methacryloyl기를 함유한 가용성 폴리이미드의 합성과 감광 특성
초록
폴리이미드는 높은 열안정성, 우수한 기계적, 전기적 성질을 가지고 있어 많은 연구가 진행되어 왔지만, 대부분의
유기용매에 불용인 관계로 그 용도가 제한되어 있다. 본 연구에서는 방향족 디아민인 2,2,-bis(3-amino-4-hydroxy-
phenyl) hexafluoropropane (BAPAF)와 3,3,-diamino-4,4-dihydroxybyphenyl (HAB)를 사용하고 방향족 디안하이드라이
드인 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic dianhydride (PMDA), 4,4-oxydiphthalic
dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride (BTDA) 및 3,3,4,4-diphenylsulfone tetracarboxylic
dianhydride (DSDA)를 사용하여 가용성 폴리이미드를 합성하였다. 폴리이미드의 성질은 NMR, FR-IR 및 TGA를
이용하여 조사하였으며, 유전상수는 축전용량을 측정하여 계산하였다. 히드록시기를 포함한 폴리이미드와 methacryloyl
chloride를 반응시켜 감광성 폴리이미드를 합성하고, photolithography 기술을 이용하여 micro-패턴을 형성하였다.